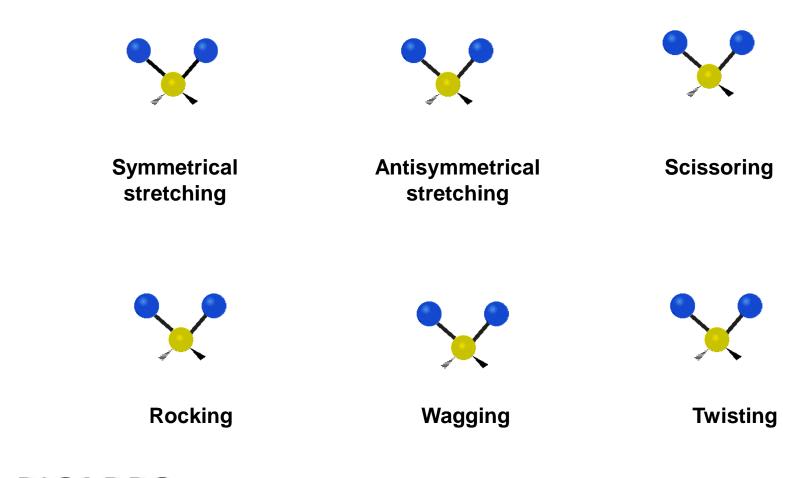
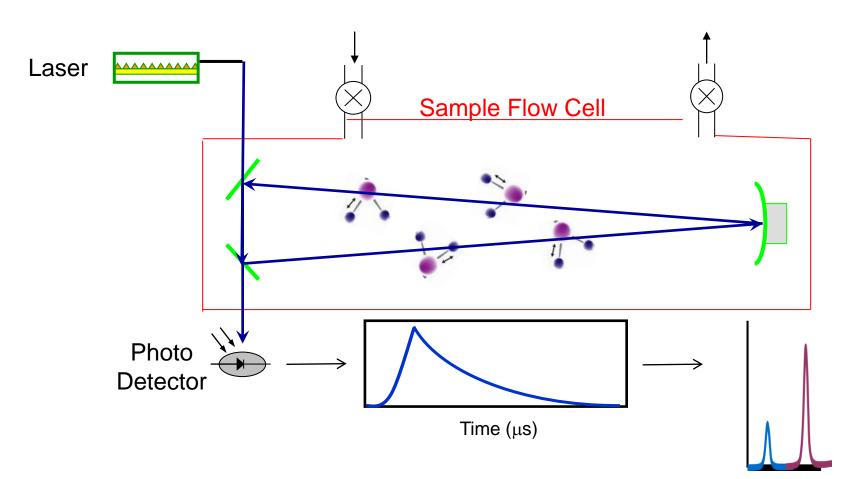
### Rapid analysis of water isotope fractionation along a *Pinus spp.* branch: in-situ measurement of matrixbound waters

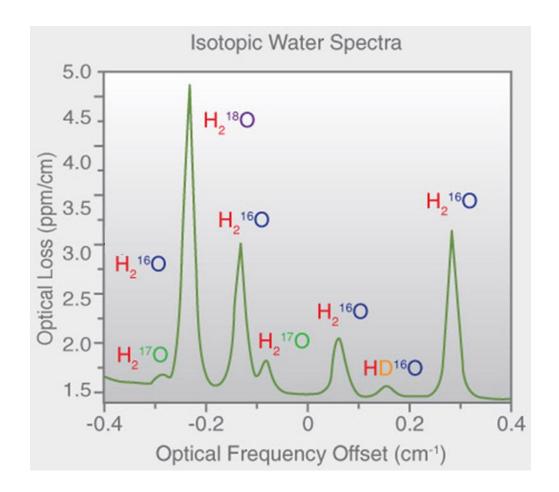

#### Robert J. Panetta, Gregor Hsiao, Aaron van Pelt

Picarro Inc., USA Picarro B.V., Netherlands


International Symposium on Managing Soils for Food Security and Climate Change Adaptation and Mitigation

> International Atomic Energy Agency, Vienna July 26, 2012

### Optical spectroscopy – molecules in motion




# Optical spectroscopy – Absorption of Light



#### ΡΙΟΛ ΠΟ

### Optical spectroscopy – absorption spectra



- Bond stretching
   frequency is affected
   by isotopes
- Match frequency to isotopologue
- Measure amount of each isotopologue
- Multiple isotopes of a single molecule is rapid and simple

### ΡΙΟΔ ΡΟ

# One Analyzer, Many Applications

#### Small, portable and high precision gives researchers insights into:

- <u>Hydrology</u>
  - Watershed mapping
  - Aquifer mapping
- Oceanography
  - Water formation in the polar regions
- Ice Core Analysis
  - Precipitation and Climate records
- <u>Atmospheric Water Measurements</u>
  - Air mass sources and trajectories
  - Post depositional processes in ice and snow
- Ecohydrology and Evapotranspiration
  - Soil evaporation
  - Plant transpiration
- Metabolic Studies
- Food Authentication



### ΡΙΟΛ ΚΟ

# One Analyzer, Many Applications

#### Small, portable and high precision gives researchers insights into:

- Hydrology
  - Watershed mapping
  - Aquifer mapping
- Oceanography
  - Water formation in the polar regions
- Ice Core Analysis
  - Precipitation and Climate records
- <u>Atmospheric Water Measurements</u>
  - Air mass sources and trajectories
  - Post depositional processes in ice and snow
- Ecohydrology and Evapotranspiration
  - Soil evaporation
  - Plant transpiration
- Metabolic Studies
- Food Authentication



# **Extraction of Solid Samples**

#### **Cryogenic Vacuum Distillation**

- Not Field Portable (until very recently)
- Hazardous Conditions and Long preparation time
- More steps increases possibility of unwanted isotopic fractionation
- Required to store samples and transport them to the lab





Cryogenic vacuum distillation 30-90 minutes per sample



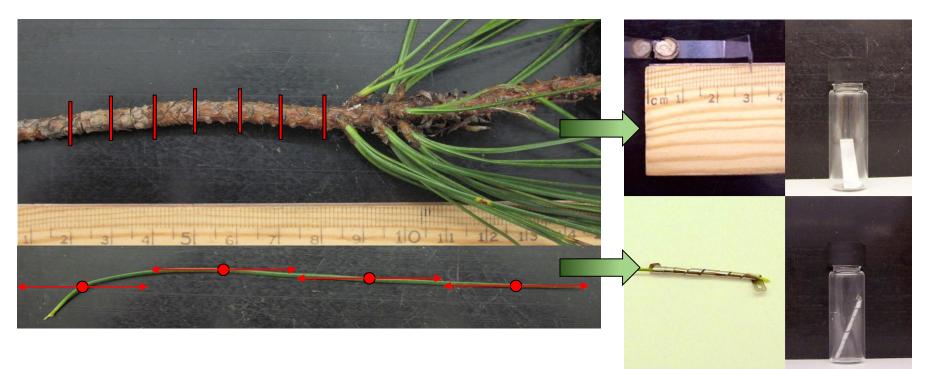
CRDS Direct measurement of Water 10-40 minutes per sample

# **Extraction of Solid Samples**

#### Can it be streamlined?

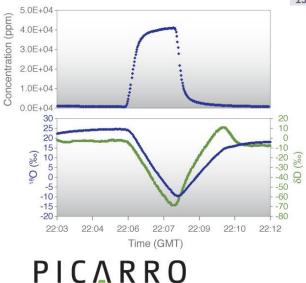
- Can the extraction be amenable to field use?
- Can the extraction be faster?
- Can there be fewer manipulations?
- Can the extraction be integrated with the analysis?






# Induction Module

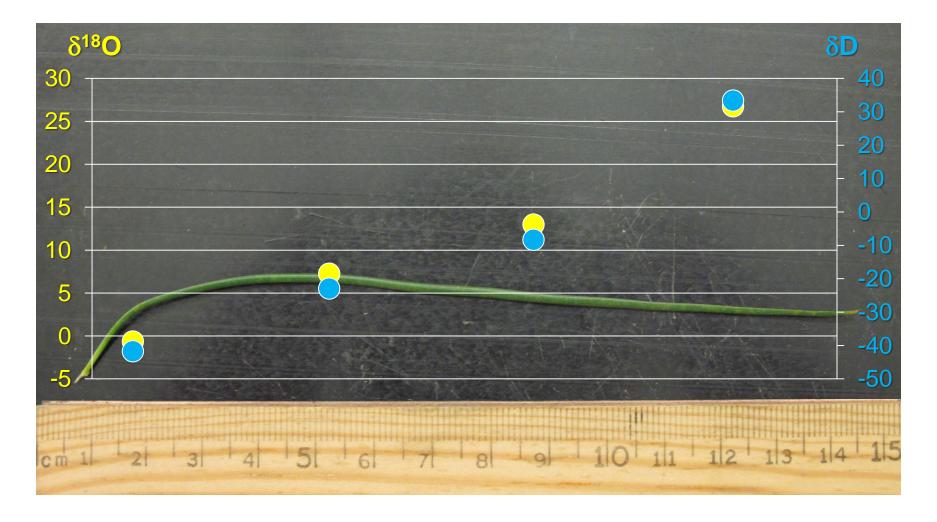



- Solid samples are heated by induction to release water vapor (2 – 3 µL equivalent)
- A flow of dry gas directs sample vapor to water isotope analyzer L2130-*i*
- Sample preparation & analysis typically done in 5 15 minutes
- Rugged, low power consumption (< 200W at steady state)

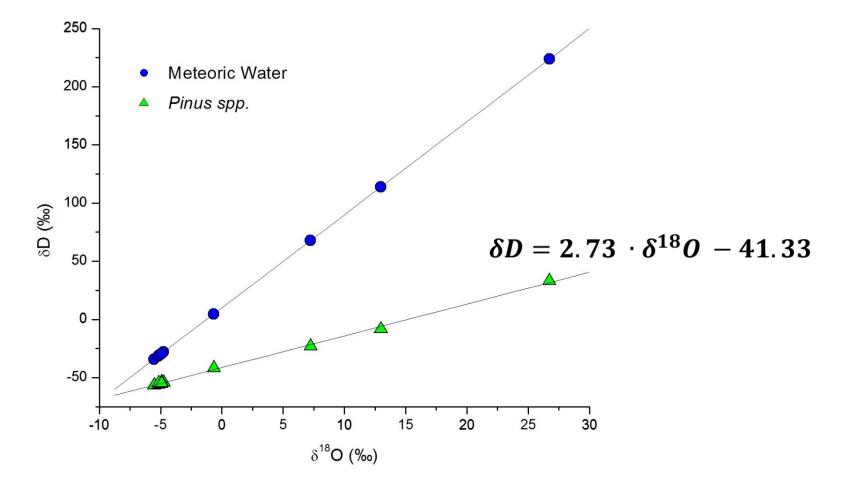
- Water Nitrog Ch Water Water Water Water
- Razor blade to sample ~0.05 mm slice every cm of the branch.
- Needle cut at 3.5-cm intervals






|    | A B                 |                     | С            | D                                | E        | F        |
|----|---------------------|---------------------|--------------|----------------------------------|----------|----------|
| 1  | Start Time          | End Time            | Method       | Description                      | d(18_16) | d(D_H)   |
| 2  | 2011-07-08 20:28:07 | 2011-07-08 20:35:09 | Woody Stems  | Pine, stem 1.5 cm                | -5.537   | -56.652  |
| 3  | 2011-07-08 20:36:12 | 2011-07-08 20:43:13 | Woody Stems  | Pine, stem 2.5 cm                | -5.184   | -55.944  |
| 4  | 2011-07-08 20:46:47 | 2011-07-08 20:53:49 | Woody Stems  | Pine, stem 3.5 cm                | -4.96    | -55.205  |
| 5  | 2011-07-08 20:54:39 | 2011-07-08 21:01:39 | Woody Stems  | Pine, stem 4.5 cm                | -4.757   | -54.179  |
| 6  | 2011-07-08 21:02:33 | 2011-07-08 21:09:33 | Woody Stems  | Pine, stem 5.5 cm                | -4.904   | -53.913  |
| 7  | 2011-07-08 21:10:28 | 2011-07-08 21:17:29 | Woody Stems  | Pine, stem 6.5 cm                | -5.156   | -54.571  |
| 8  | 2011-07-08 21:19:13 | 2011-07-08 21:26:12 | Woody Stems  | Pine, stem 7.5 cm                | -4.915   | -54.7    |
| 9  | 2011-07-08 21:27:01 | 2011-07-08 21:36:27 | Whole Leaf   | Pine, needle, 7.5 cm, 0-3.5 cm   | -26.965  | -237.325 |
| 10 | 2011-07-08 21:38:20 | 2011-07-08 21:45:07 | Leaf Stems   | Pine, needle, 7.5 cm, 3.5-7 cm   | 3.649    | -52.351  |
| 11 | 2011-07-08 21:47:08 | 2011-07-08 21:56:49 | Whole Leaf 2 | Pine, needle, 7.5 cm, 7-10.5 cm  | 14.863   | -4.18    |
| 12 | 2011-07-08 21:57:16 | 2011-07-08 22:06:56 | Whole Leaf 2 | Pine, needle, 7.5 cm, 10.5-14 cm | 20.706   | -5.963   |
| 13 |                     |                     |              |                                  |          |          |




- 98 minutes for 11 Samples
   +15 for analysis of 3 standards
- δD +/- 1.82 ‰, δ<sup>18</sup>O +/- 0.23 ‰
- Obtain  $\delta D$  and  $\delta^{18}O$  immediately



#### PICARRO



### ΡΙΟΛ ΠΟ



#### Valer Water Waar Waar

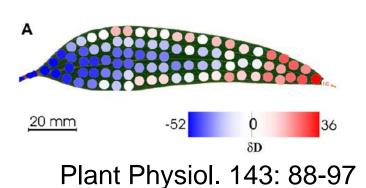
### • Stem Water:

- Little variability:  $\delta D = -55.02 \pm 0.98$  ‰, enrichment of 0.98 ‰ / cm  $\delta^{18}O = -5.06 \pm 0.25$  ‰, enrichment of 0.10 ‰ / cm

### Leaf Water:

- Significant enrichment along the length of the needle:  $\delta D$  enrichment of 3.14 ‰ / cm  $\delta^{18}O$  enrichment of 1.13 ‰ / cm
- Cross-plot slope of 2.73 indicative of strong evaporation, in agreement with previous work (Chem. Geology 58:145-156)

# **Extraction of Solid Samples**

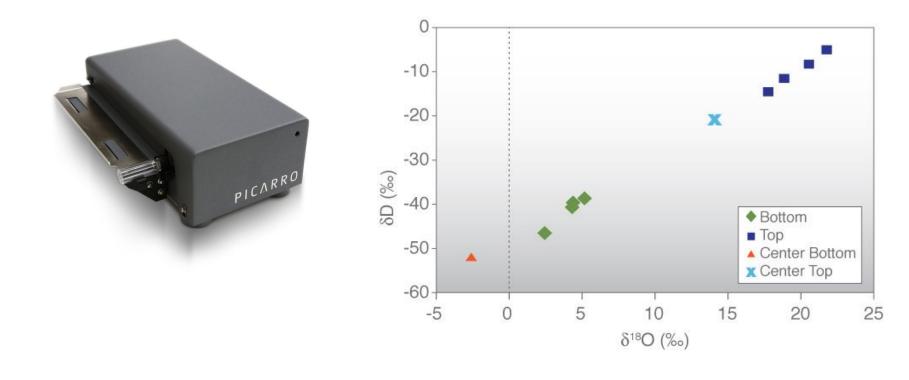

#### Can it be streamlined?

- Can the extraction be amenable to field use? Yes
- Can the extraction be faster? Yes (Minutes instead of hours, days)
- Can there be fewer manipulations? Yes (One Step)
- Can the extraction be integrated with the analysis? Yes





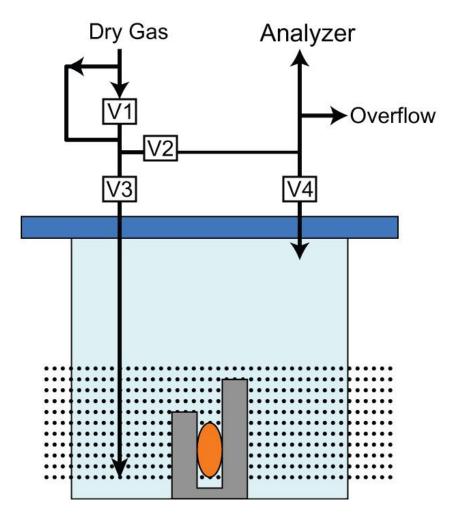
# Matrix-Bound Water




 Probe Water transport in soil-plant systems in the field

- Temporally
  - Different Times of day
  - Different Seasons
- Spatially:
  - Within a single leaf
  - Between Tissues
  - Between Soil and Plant
  - Between Soil Depths
  - Between Soil types
  - Between locations and individuals

### Thank You!





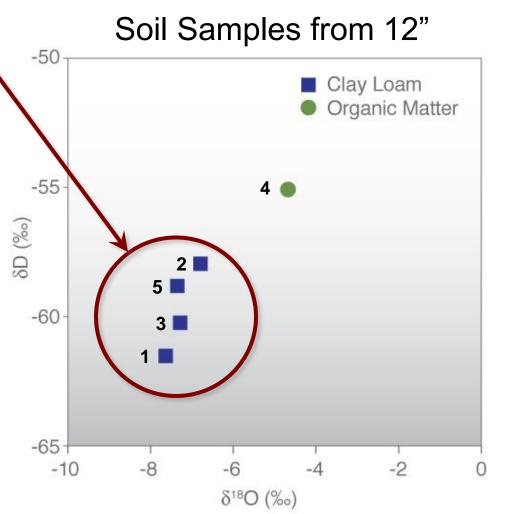



### Gas Flow





# Two needles are concentric valves are normally closed


| State   | V1 | V2 | V3 | V4 | Notes                                                                                          |
|---------|----|----|----|----|------------------------------------------------------------------------------------------------|
| Standby |    | X  |    |    | ~50 sccm by orifice<br>@ 2.5 psi                                                               |
| Ready   | X  | X  |    |    | ~250 sccm @ 2.5 psi                                                                            |
| Purge   | X  | X  | X  |    | Purges long line before<br>going into vial<br>~300 sccm @ 2 psi                                |
| Sample  | X  |    | X  | X  | Flushes sample vial<br>50-300 sccm depending<br>on pressure<br>Typically 150 sccm<br>@ 2.5 psi |

### PICARRO

# Soil Measurements

- Soil water (δ<sup>18</sup>O, δD)
   Mean -7.26,-59.23 ‰
  - $-1\sigma = 0.34, 1.56$ %
- 4 samples at ~30 cm,
  1 sample at ~15 cm
- Clay loam with bits of organic matter
- Numbers indicate sequence of measurement

PICARRO



